Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NED: An Inter-Graph Node Metric Based On Edit Distance (1602.02358v3)

Published 7 Feb 2016 in cs.DB, cs.LG, and cs.SI

Abstract: Node similarity is a fundamental problem in graph analytics. However, node similarity between nodes in different graphs (inter-graph nodes) has not received a lot of attention yet. The inter-graph node similarity is important in learning a new graph based on the knowledge of an existing graph (transfer learning on graphs) and has applications in biological, communication, and social networks. In this paper, we propose a novel distance function for measuring inter-graph node similarity with edit distance, called NED. In NED, two nodes are compared according to their local neighborhood structures which are represented as unordered k-adjacent trees, without relying on labels or other assumptions. Since the computation problem of tree edit distance on unordered trees is NP-Complete, we propose a modified tree edit distance, called TED*, for comparing neighborhood trees. TED* is a metric distance, as the original tree edit distance, but more importantly, TED* is polynomially computable. As a metric distance, NED admits efficient indexing, provides interpretable results, and shows to perform better than existing approaches on a number of data analysis tasks, including graph de-anonymization. Finally, the efficiency and effectiveness of NED are empirically demonstrated using real-world graphs.

Citations (7)

Summary

We haven't generated a summary for this paper yet.