Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embedding tetrahedra into quasirandom hypergraphs (1602.02289v2)

Published 6 Feb 2016 in math.CO

Abstract: We investigate extremal problems for quasirandom hypergraphs. We say that a $3$-uniform hypergraph $H=(V,E)$ is $(d,\eta)$-quasirandom if for any subset $X\subseteq V$ and every set of pairs $P\subseteq V\times V$ the number of pairs $(x,(y,z))\in X\times P$ with ${x,y,z}$ being a hyperedge of $H$ is in the interval $d|X||P|\pm\eta|V|3$. We show that for any $\varepsilon>0$ there exists $\eta>0$ such that every sufficiently large $(1/2+\varepsilon,\eta)$-quasirandom hypergraph contains a tetrahedron, i.e., four vertices spanning all four hyperedges. A known random construction shows that the density $1/2$ is best possible. This result is closely related to a question of Erd\H{o}s, whether every weakly quasirandom $3$-uniform hypergraph $H$ with density bigger than $1/2$, i.e., every large subset of vertices induces a hypergraph with density bigger than $1/2$, contains a tetrahedron.

Summary

We haven't generated a summary for this paper yet.