Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Regenerative Learning of Hierarchical Features in Spiking Deep Networks for Object Recognition (1602.01510v1)

Published 3 Feb 2016 in cs.NE

Abstract: We present a spike-based unsupervised regenerative learning scheme to train Spiking Deep Networks (SpikeCNN) for object recognition problems using biologically realistic leaky integrate-and-fire neurons. The training methodology is based on the Auto-Encoder learning model wherein the hierarchical network is trained layer wise using the encoder-decoder principle. Regenerative learning uses spike-timing information and inherent latencies to update the weights and learn representative levels for each convolutional layer in an unsupervised manner. The features learnt from the final layer in the hierarchy are then fed to an output layer. The output layer is trained with supervision by showing a fraction of the labeled training dataset and performs the overall classification of the input. Our proposed methodology yields 0.92%/29.84% classification error on MNIST/CIFAR10 datasets which is comparable with state-of-the-art results. The proposed methodology also introduces sparsity in the hierarchical feature representations on account of event-based coding resulting in computationally efficient learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Priyadarshini Panda (104 papers)
  2. Kaushik Roy (265 papers)
Citations (102)

Summary

We haven't generated a summary for this paper yet.