Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From $μ$-Calculus to Alternating Tree Automata using Parity Games (1602.00912v1)

Published 2 Feb 2016 in cs.LO and cs.FL

Abstract: $\mu$-Calculus and automata on infinite trees are complementary ways of describing infinite tree languages. The correspondence between $\mu$-Calculus and alternating tree automaton is used to solve the satisfiability and model checking problems by compiling the modal $\mu$-Calculus formula into an alternating tree automata. Thus advocating an automaton model specially tailored for working with modal $\mu$-Calculus. The advantage of the automaton model is its ability to deal with arbitrary branching in a much simpler way as compare to the one proposed by Janin and Walukiewicz. Both problems (i.e., model checking and satisfiability) are solved by reduction to the corresponding problems of alternating tree automata, namely to the acceptance and the non-emptiness problems, respectively. These problems, in turn, are solved using parity games where semantics of alternating tree automata is translated to a winning strategy in an appropriate parity game.

Summary

We haven't generated a summary for this paper yet.