Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Dirichlet problem for fractional $p$-Laplacian with singular nonlinearity (1602.00872v2)

Published 2 Feb 2016 in math.AP

Abstract: In this article, we study the following fractional $p$-Laplacian equation with critical growth singular nonlinearity \begin{equation*} \quad (-\De_{p})s u = \la u{-q} + u{\alpha}, u>0 \; \text{in}\; \Om,\quad u = 0 \; \mbox{in}\; \mb Rn \setminus\Om. \end{equation*} where $\Om$ is a bounded domain in $\mb{R}n$ with smooth boundary $\partial \Om$, $n > sp, s \in (0,1), \la >0, 0 < q \leq 1 $ and $\alpha\le p*_s-1$. We use variational methods to show the existence and multiplicity of positive solutions of above problem with respect to parameter $\la$.

Summary

We haven't generated a summary for this paper yet.