Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive non-parametric estimation in the presence of dependence (1602.00531v1)

Published 1 Feb 2016 in math.ST and stat.TH

Abstract: We consider non-parametric estimation problems in the presence of dependent data, notably non-parametric regression with random design and non-parametric density estimation. The proposed estimation procedure is based on a dimension reduction. The minimax optimal rate of convergence of the estimator is derived assuming a sufficiently weak dependence characterized by fast decreasing mixing coefficients. We illustrate these results by considering classical smoothness assumptions. However, the proposed estimator requires an optimal choice of a dimension parameter depending on certain characteristics of the function of interest, which are not known in practice. The main issue addressed in our work is an adaptive choice of this dimension parameter combining model selection and Lepski's method. It is inspired by the recent work of Goldenshluger and Lepski (2011). We show that this data-driven estimator can attain the lower risk bound up to a constant provided a fast decay of the mixing coefficients.

Summary

We haven't generated a summary for this paper yet.