Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sublinear signal production in a two-dimensional Keller-Segel-Stokes system (1602.00480v1)

Published 1 Feb 2016 in math.AP

Abstract: We study the chemotaxis-fluid system \begin{align*} \left{\begin{array}{r@{\,}l@{\quad}l@{\,}c} n_{t}&=\Delta n-\nabla!\cdot(n\nabla c)-u\cdot!\nabla n,\ &x\in\Omega,& t>0,\ c_{t}&=\Delta c-c+f(n)-u\cdot!\nabla c,\ &x\in\Omega,& t>0,\ u_{t}&=\Delta u+\nabla P+n\cdot!\nabla\phi,\ &x\in\Omega,& t>0,\ \nabla\cdot u&=0,\ &x\in\Omega,& t>0, \end{array}\right. \end{align*} where $\Omega\subset\mathbb{R}2$ is a bounded and convex domain with smooth boundary, $\phi\in W{1,\infty}\left(\Omega\right)$ and $f\in C1([0,\infty))$ satisfies $0\leq f(s)\leq K_0 s\alpha$ for all $s\in[0,\infty)$, with $K_0>0$ and $\alpha\in(0,1]$. This system models the chemotactic movement of actively communicating cells in slow moving liquid. We will show that in the two-dimensional setting for any $\alpha\in(0,1)$ the classical solution to this Keller-Segel-Stokes-system is global and remains bounded for all times.

Summary

We haven't generated a summary for this paper yet.