Papers
Topics
Authors
Recent
2000 character limit reached

New order bounds in differential elimination algorithms

Published 31 Jan 2016 in math.AC, math.AG, and math.CA | (1602.00246v2)

Abstract: We present a new upper bound for the orders of derivatives in the Rosenfeld-Groebner algorithm. This algorithm computes a regular decomposition of a radical differential ideal in the ring of differential polynomials over a differential field of characteristic zero with an arbitrary number of commuting derivations. This decomposition can then be used to test for membership in the given radical differential ideal. In particular, this algorithm allows us to determine whether a system of polynomial PDEs is consistent. Previously, the only known order upper bound was given by Golubitsky, Kondratieva, Moreno Maza, and Ovchinnikov for the case of a single derivation. We achieve our bound by associating to the algorithm antichain sequences whose lengths can be bounded using the results of Leon Sanchez and Ovchinnikov.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.