Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian stochastic volatility models for high-frequency data

Published 31 Jan 2016 in stat.AP and stat.ME | (1602.00202v1)

Abstract: We formulate a discrete-time Bayesian stochastic volatility model for high-frequency stock-market data that directly accounts for microstructure noise, and outline a Markov chain Monte Carlo algorithm for parameter estimation. The methods described in this paper are designed to be coherent across all sampling timescales, with the goal of estimating the latent log-volatility signal from data collected at arbitrarily short sampling periods. In keeping with this goal, we carefully develop a method for eliciting priors. The empirical results derived from both simulated and real data show that directly accounting for microstructure in a state-space formulation allows for well-calibrated estimates of the log-volatility process driving prices.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.