Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid CNN and Dictionary-Based Models for Scene Recognition and Domain Adaptation (1601.07977v1)

Published 29 Jan 2016 in cs.CV

Abstract: Convolutional neural network (CNN) has achieved state-of-the-art performance in many different visual tasks. Learned from a large-scale training dataset, CNN features are much more discriminative and accurate than the hand-crafted features. Moreover, CNN features are also transferable among different domains. On the other hand, traditional dictionarybased features (such as BoW and SPM) contain much more local discriminative and structural information, which is implicitly embedded in the images. To further improve the performance, in this paper, we propose to combine CNN with dictionarybased models for scene recognition and visual domain adaptation. Specifically, based on the well-tuned CNN models (e.g., AlexNet and VGG Net), two dictionary-based representations are further constructed, namely mid-level local representation (MLR) and convolutional Fisher vector representation (CFV). In MLR, an efficient two-stage clustering method, i.e., weighted spatial and feature space spectral clustering on the parts of a single image followed by clustering all representative parts of all images, is used to generate a class-mixture or a classspecific part dictionary. After that, the part dictionary is used to operate with the multi-scale image inputs for generating midlevel representation. In CFV, a multi-scale and scale-proportional GMM training strategy is utilized to generate Fisher vectors based on the last convolutional layer of CNN. By integrating the complementary information of MLR, CFV and the CNN features of the fully connected layer, the state-of-the-art performance can be achieved on scene recognition and domain adaptation problems. An interested finding is that our proposed hybrid representation (from VGG net trained on ImageNet) is also complementary with GoogLeNet and/or VGG-11 (trained on Place205) greatly.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Guo-Sen Xie (23 papers)
  2. Xu-Yao Zhang (44 papers)
  3. Shuicheng Yan (275 papers)
  4. Cheng-Lin Liu (71 papers)
Citations (146)

Summary

We haven't generated a summary for this paper yet.