Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reachability Oracles for Directed Transmission Graphs (1601.07797v2)

Published 28 Jan 2016 in cs.CG

Abstract: Let $P \subset \mathbb{R}d$ be a set of $n$ points in $d$ dimensions such that each point $p \in P$ has an associated radius $r_p > 0$. The transmission graph $G$ for $P$ is the directed graph with vertex set $P$ such that there is an edge from $p$ to $q$ if and only if $|pq| \leq r_p$, for any $p, q \in P$. A reachability oracle is a data structure that decides for any two vertices $p, q \in G$ whether $G$ has a path from $p$ to $q$. The quality of the oracle is measured by the space requirement $S(n)$, the query time $Q(n)$, and the preprocessing time. For transmission graphs of one-dimensional point sets, we can construct in $O(n \log n)$ time an oracle with $Q(n) = O(1)$ and $S(n) = O(n)$. For planar point sets, the ratio $\Psi$ between the largest and the smallest associated radius turns out to be an important parameter. We present three data structures whose quality depends on $\Psi$: the first works only for $\Psi < \sqrt{3}$ and achieves $Q(n) = O(1)$ with $S(n) = O(n)$ and preprocessing time $O(n\log n)$; the second data structure gives $Q(n) = O(\Psi3 \sqrt{n})$ and $S(n) = O(\Psi3 n{3/2})$; the third data structure is randomized with $Q(n) = O(n{2/3}\log{1/3} \Psi \log{2/3} n)$ and $S(n) = O(n{5/3}\log{1/3} \Psi \log{2/3} n)$ and answers queries correctly with high probability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.