Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Game Theoretic Analysis of Tree Based Referrals for Crowd Sensing Social Systems with Passive Rewards (1601.07505v1)

Published 27 Jan 2016 in cs.GT, cs.MA, cs.SI, and physics.soc-ph

Abstract: Participatory crowd sensing social systems rely on the participation of large number of individuals. Since humans are strategic by nature, effective incentive mechanisms are needed to encourage participation. A popular mechanism to recruit individuals is through referrals and passive incentives such as geometric incentive mechanisms used by the winning team in the 2009 DARPA Network Challenge and in multi level marketing schemes. The effect of such recruitment schemes on the effort put in by recruited strategic individuals is not clear. This paper attempts to fill this gap. Given a referral tree and the direct and passive reward mechanism, we formulate a network game where agents compete for finishing crowd sensing tasks. We characterize the Nash equilibrium efforts put in by the agents and derive closed form expressions for the same. We discover free riding behavior among nodes who obtain large passive rewards. This work has implications on designing effective recruitment mechanisms for crowd sourced tasks. For example, usage of geometric incentive mechanisms to recruit large number of individuals may not result in proportionate effort because of free riding.

Citations (1)

Summary

We haven't generated a summary for this paper yet.