Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivalence of additive-combinatorial linear inequalities for Shannon entropy and differential entropy (1601.07498v2)

Published 27 Jan 2016 in cs.IT and math.IT

Abstract: This paper addresses the correspondence between linear inequalities of Shannon entropy and differential entropy for sums of independent group-valued random variables. We show that any balanced (with the sum of coefficients being zero) linear inequality of Shannon entropy holds if and only if its differential entropy counterpart also holds; moreover, any linear inequality for differential entropy must be balanced. In particular, our result shows that recently proved differential entropy inequalities by Kontoyiannis and Madiman \cite{KM14} can be deduced from their discrete counterparts due to Tao \cite{Tao10} in a unified manner. Generalizations to certain abelian groups are also obtained. Our proof of extending inequalities of Shannon entropy to differential entropy relies on a result of R\'enyi \cite{Renyi59} which relates the Shannon entropy of a finely discretized random variable to its differential entropy and also helps in establishing the entropy of the sum of quantized random variables is asymptotically equal to that of the quantized sum; the converse uses the asymptotics of the differential entropy of convolutions with weak additive noise.

Citations (21)

Summary

We haven't generated a summary for this paper yet.