Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning and Tuning Meta-heuristics in Plan Space Planning (1601.07483v3)

Published 27 Jan 2016 in cs.AI

Abstract: In recent years, the planning community has observed that techniques for learning heuristic functions have yielded improvements in performance. One approach is to use offline learning to learn predictive models from existing heuristics in a domain dependent manner. These learned models are deployed as new heuristic functions. The learned models can in turn be tuned online using a domain independent error correction approach to further enhance their informativeness. The online tuning approach is domain independent but instance specific, and contributes to improved performance for individual instances as planning proceeds. Consequently it is more effective in larger problems. In this paper, we mention two approaches applicable in Partial Order Causal Link (POCL) Planning that is also known as Plan Space Planning. First, we endeavor to enhance the performance of a POCL planner by giving an algorithm for supervised learning. Second, we then discuss an online error minimization approach in POCL framework to minimize the step-error associated with the offline learned models thus enhancing their informativeness. Our evaluation shows that the learning approaches scale up the performance of the planner over standard benchmarks, specially for larger problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shashank Shekhar (35 papers)
  2. Deepak Khemani (3 papers)

Summary

We haven't generated a summary for this paper yet.