Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Streaming Space Complexity of Nearly All Functions of One Variable on Frequency Vectors (1601.07473v1)

Published 27 Jan 2016 in cs.DS

Abstract: A central problem in the theory of algorithms for data streams is to determine which functions on a stream can be approximated in sublinear, and especially sub-polynomial or poly-logarithmic, space. Given a function $g$, we study the space complexity of approximating $\sum_{i=1}n g(|f_i|)$, where $f\in\mathbb{Z}n$ is the frequency vector of a turnstile stream. This is a generalization of the well-known frequency moments problem, and previous results apply only when $g$ is monotonic or has a special functional form. Our contribution is to give a condition such that, except for a narrow class of functions $g$, there is a space-efficient approximation algorithm for the sum if and only if $g$ satisfies the condition. The functions $g$ that we are able to characterize include all convex, concave, monotonic, polynomial, and trigonometric functions, among many others, and is the first such characterization for non-monotonic functions. Thus, for nearly all functions of one variable, we answer the open question from the celebrated paper of Alon, Matias and Szegedy (1996).

Citations (26)

Summary

We haven't generated a summary for this paper yet.