Papers
Topics
Authors
Recent
Search
2000 character limit reached

Balanced Reed-Solomon Codes

Published 27 Jan 2016 in cs.IT and math.IT | (1601.07283v1)

Abstract: We consider the problem of constructing linear Maximum Distance Separable (MDS) error-correcting codes with generator matrices that are sparsest and balanced. In this context, sparsest means that every row has the least possible number of non-zero entries, and balanced means that every column contains the same number of non-zero entries. Codes with this structure minimize the maximal computation time of computing any code symbol, a property that is appealing to systems where computational load-balancing is critical. The problem was studied before by Dau et al. where it was shown that there always exists an MDS code over a sufficiently large field such that its generator matrix is both sparsest and balanced. However, the construction is not explicit and more importantly, the resulting MDS codes do not lend themselves to efficient error correction. With an eye towards explicit constructions with efficient decoding, we show in this paper that the generator matrix of a cyclic Reed-Solomon code of length $n$ and dimension $k$ can always be transformed to one that is both sparsest and balanced, for all parameters $n$ and $k$ where $\frac{k}{n}(n - k + 1)$ is an integer.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.