Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quasi-isometries Between Groups with Two-Ended Splittings

Published 26 Jan 2016 in math.GR | (1601.07147v1)

Abstract: We construct structure invariants' of a one-ended, finitely presented group that describe the way in which the factors of its JSJ decomposition over two-ended subgroups fit together. For groups satisfying two technical conditions, these invariants reduce the problem of quasi-isometry classification of such groups to the problem of relative quasi-isometry classification of the factors of their JSJ decompositions. The first condition is that their JSJ decompositions have two-ended cylinder stabilizers. The second is that every factor in their JSJ decompositions is eitherrelatively rigid' or `hanging'. Hyperbolic groups always satisfy the first condition, and it is an open question whether they always satisfy the second. The same methods also produce invariants that reduce the problem of classification of one-ended hyperbolic groups up to homeomorphism of their Gromov boundaries to the problem of classification of the factors of their JSJ decompositions up to relative boundary homeomorphism type.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.