Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Survey on the attention based RNN model and its applications in computer vision (1601.06823v1)

Published 25 Jan 2016 in cs.CV and cs.LG

Abstract: The recurrent neural networks (RNN) can be used to solve the sequence to sequence problem, where both the input and the output have sequential structures. Usually there are some implicit relations between the structures. However, it is hard for the common RNN model to fully explore the relations between the sequences. In this survey, we introduce some attention based RNN models which can focus on different parts of the input for each output item, in order to explore and take advantage of the implicit relations between the input and the output items. The different attention mechanisms are described in detail. We then introduce some applications in computer vision which apply the attention based RNN models. The superiority of the attention based RNN model is shown by the experimental results. At last some future research directions are given.

Citations (110)

Summary

We haven't generated a summary for this paper yet.