Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operator means of probability measures and generalized Karcher equations (1601.06777v1)

Published 25 Jan 2016 in math.FA and math.OA

Abstract: In this article we consider means of positive bounded linear operators on a Hilbert space. We present a complete theory that provides a framework which extends the theory of the Karcher mean, its approximating matrix power means, and a large part of Kubo-Ando theory to arbitrary many variables, in fact, to the case of probability measures with bounded support on the cone of positive definite operators. This framework characterizes each operator mean extrinsically as unique solutions of generalized Karcher equations which are obtained by exchanging the matrix logarithm function in the Karcher equation to arbitrary operator monotone functions over the positive real half-line. If the underlying Hilbert space is finite dimensional, then these generalized Karcher equations are Riemannian gradients of convex combinations of strictly geodesically convex log-determinant divergence functions, hence these new means are the global minimizers of them, in analogue to the case of the Karcher mean as pointed out. Our framework is based on fundamental contraction results with respect to the Thompson metric, which provides us nonlinear contraction semigroups in the cone of positive definite operators that form a decreasing net approximating these operator means in the strong topology from above.

Summary

We haven't generated a summary for this paper yet.