Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schematic Cut elimination and the Ordered Pigeonhole Principle [Extended Version] (1601.06548v1)

Published 25 Jan 2016 in math.LO and cs.LO

Abstract: In previous work, an attempt was made to apply the schematic CERES method [8] to a formal proof with an arbitrary number of {\Pi} 2 cuts (a recursive proof encapsulating the infinitary pigeonhole principle) [5]. However the derived schematic refutation for the characteristic clause set of the proof could not be expressed in the formal language provided in [8]. Without this formalization a Herbrand system cannot be algorithmically extracted. In this work, we provide a restriction of the proof found in [5], the ECA-schema (Eventually Constant Assertion), or ordered infinitary pigeonhole principle, whose analysis can be completely carried out in the framework of [8], this is the first time the framework is used for proof analysis. From the refutation of the clause set and a substitution schema we construct a Herbrand system.

Citations (21)

Summary

We haven't generated a summary for this paper yet.