Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Information Theoretical Concept: Information-Weighted Heavy-tailed Distributions (1601.06412v1)

Published 24 Jan 2016 in math.ST, cs.IT, math.IT, math.PR, and stat.TH

Abstract: Given an arbitrary continuous probability density function, it is introduced a conjugated probability density, which is defined through the Shannon information associated with its cumulative distribution function. These new densities are computed from a number of standard distributions, including uniform, normal, exponential, Pareto, logistic, Kumaraswamy, Rayleigh, Cauchy, Weibull, and Maxwell-Boltzmann. The case of joint information-weighted probability distribution is assessed. An additive property is derived in the case of independent variables. One-sided and two-sided information-weighting are considered. The asymptotic behavior of the tail of the new distributions is examined. It is proved that all probability densities proposed here define heavy-tailed distributions. It is shown that the weighting of distributions regularly varying with extreme-value index $\alpha > 0$ still results in a regular variation distribution with the same index. This approach can be particularly valuable in applications where the tails of the distribution play a major role.

Citations (2)

Summary

We haven't generated a summary for this paper yet.