Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ramanujan's theta functions and sums of triangular numbers (1601.06378v8)

Published 24 Jan 2016 in math.NT

Abstract: Let $\Bbb Z$ and $\Bbb N$ be the set of integers and the set of positive integers, respectively. For $a_1,a_2,\ldots,a_k,n\in\Bbb N$ let $N(a_1,a_2,\ldots,a_k;n)$ be the number of representations of $n$ by $a_1x_12+a_2x_22+\cdots+a_kx_k2$, and let $t(a_1,a_2,\ldots,a_k;n)$ be the number of representations of $n$ by $a_1\frac{x_1(x_1-1)}2+a_2\frac{x_2(x_2-1)}2+\cdots+a_k\frac{x_k(x_k-1)}2$ $(x_1,\ldots,x_k\in\Bbb Z$). In this paper, by using Ramanujan's theta functions $\varphi(q)$ and $\psi(q)$ we reveal many relations between $t(a_1,a_2,\ldots,a_k;n)$ and $N(a_1,a_2,\ldots,a_k;8n+a_1+\cdots+a_k)$ for $k=3,4$.

Summary

We haven't generated a summary for this paper yet.