Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unshuffling Permutations (1601.05962v2)

Published 22 Jan 2016 in cs.DS and math.CO

Abstract: A permutation is said to be a square if it can be obtained by shuffling two order-isomorphic patterns. The definition is intended to be the natural counterpart to the ordinary shuffle of words and languages. In this paper, we tackle the problem of recognizing square permutations from both the point of view of algebra and algorithms. On the one hand, we present some algebraic and combinatorial properties of the shuffle product of permutations. We follow an unusual line consisting in defining the shuffle of permutations by means of an unshuffling operator, known as a coproduct. This strategy allows to obtain easy proofs for algebraic and combinatorial properties of our shuffle product. We besides exhibit a bijection between square $(213,231)$-avoiding permutations and square binary words. On the other hand, by using a pattern avoidance criterion on oriented perfect matchings, we prove that recognizing square permutations is $\mathbf{NP}$-complete.

Citations (4)

Summary

We haven't generated a summary for this paper yet.