Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the maximum likelihood estimator for the Generalized Extreme-Value distribution (1601.05702v3)

Published 21 Jan 2016 in math.ST and stat.TH

Abstract: The vanilla method in univariate extreme-value theory consists of fitting the three-parameter Generalized Extreme-Value (GEV) distribution to a sample of block maxima. Despite claims to the contrary, the asymptotic normality of the maximum likelihood estimator has never been established. In this paper, a formal proof is given using a general result on the maximum likelihood estimator for parametric families that are differentiable in quadratic mean but whose supports depend on the parameter. An interesting side result concerns the (lack of) differentiability in quadratic mean of the GEV family.

Summary

We haven't generated a summary for this paper yet.