Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilinear Hardy-Cesàro Operator and Commutator on the product of Morrey-Herz spaces (1601.05542v1)

Published 21 Jan 2016 in math.CA

Abstract: We obtain sufficient and necessary conditions on weight functions $s_1(t),\ldots,s_m(t)$ and $\psi(t)$ so that the weighted multilinear Hardy-Ces`{a}ro operator [(f_1,\ldots,f_m)\mapsto \int_{[0,1]n}\left(\prod_{k=1}nf_k\left(s_k(t) x\right)\right)\psi(t)dt ] is bounded from $\dot{K}{\alpha_1, p_1}{q_1}(\omega_1)\times \cdots \times\dot{K}{\alpha_m, p_m}{q_m}(\omega_m)$ to $\dot{K}{\alpha, p}{q}(\omega)$ and from $M\dot{K}{\alpha_1, \lambda_1}{p_1,q_1}(\omega_1)\times \cdots \times M\dot{K}{\alpha_m, \lambda_m}{p_m,q_m}(\omega_m)$ to $M\dot{K}{\alpha, \lambda}{p,q}(\omega)$. The sharp bounds are also obtained and these results hold for both cases $0<p<1$ and $1\leq p<\infty$. We give a sufficient condition so that if symbols $b_1,\ldots,b_m$ are Lipschitz, then the commutator of the weighted Hardy-Ces`{a}ro operator [ (f_1,\ldots,f_m)\mapsto\int_{[0,1]n}\left(\prod\limits_{k=1}mf_k\left(s_k(t)x\right)\right)\left(\prod_{k=1}m\left(b_k(x)-b_k\left(s_k(t)x\right)\right)\right)\psi(t)dt] is bounded from $M\dot{K}{\alpha_1, \lambda_1}{p_1, q_1}(\omega_1)\times \cdots \times M\dot{K}{\alpha_m, \lambda_m}{p_m, q_m}(\omega_m)$ to $M\dot{K}{\alpha\prime, \lambda}_{p, q}(\omega)$ for both cases $0<p<1$ and $1\leq p<\infty$. By these we extend and strengthen previous results deu to Tang, Xue, and Zhou [16].

Summary

We haven't generated a summary for this paper yet.