Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combined Compute and Storage: Configurable Memristor Arrays to Accelerate Search (1601.05273v1)

Published 20 Jan 2016 in cs.ET

Abstract: Emerging technologies present opportunities for system designers to meet the challenges presented by competing trends of big data analytics and limitations on CMOS scaling. Specifically, memristors are an emerging high-density technology where the individual memristors can be used as storage or to perform computation. The voltage applied across a memristor determines its behavior (storage vs. compute), which enables a configurable memristor substrate that can embed computation with storage. This paper explores accelerating point and range search queries as instances of the more general configurable combined compute and storage capabilities of memristor arrays. We first present MemCAM, a configurable memristor-based content addressable memory for the cases when fast, infrequent searches over large datasets are required. For frequent searches, memristor lifetime becomes a concern. To increase memristor array lifetime we introduce hybrid data structures that combine trees with MemCAM using conventional CMOS processor/cache hierarchies for the upper levels of the tree and configurable memristor technologies for lower levels. We use SPICE to analyze energy consumption and access time of memristors and use analytic models to evaluate the performance of configurable hybrid data structures. The results show that with acceptable energy consumption our configurable hybrid data structures improve performance of search intensive applications and achieve lifetime in years or decades under continuous queries. Furthermore, the configurability of memristor arrays and the proposed data structures provide opportunities to tune the trade- off between performance and lifetime and the data structures can be easily adapted to future memristors or other technologies with improved endurance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.