Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Restricted Carleson Variations at Endpoint and Discretized Hilbert Transforms in the Plane (1601.04683v1)

Published 18 Jan 2016 in math.CA

Abstract: We provide elementary proofs that the 2-variation Carleson operator $V_2$ along with explicit bilinear multipliers adapted to ${\xi_1 + \xi_2 = 0}$ satisfy no $Lp$ estimates. Furthermore, we obtain $Lp \rightarrow Lp$ estimates when $2 < p <\infty$ for a smooth restricted variant of $V_2$ that is defined a priori on Schwartz functions by the formula \begin{eqnarray*} \mathcal{V}{res}_2 : f \mapsto \sup_{R \in \mathbb{R}+} ~~\sup{0 \leq \alpha < R} ~~\left(\sum_{j \in \mathbb{Z}} \left|f*\mathcal{F}{-1} \left[ \tilde{1}{[\alpha + j R, \alpha + (j+1)R]}\right] \right|2 \right){1/2} \end{eqnarray*} where $\tilde{1}{I} (x) := \tilde{1}(|I|{-1} (x-c_I))$ for all intervals $I = [c_I - |I|/2, c_I + |I|/2] \subset \mathbb{R}$ and $\tilde{1} \in C\infty([-1/2, 1/2])$. We then study bi-sublinear variants of $\mathcal{V}_2{res}$ before showing that multipliers, which are adapted to ${\xi_1 + \xi_2=0}$ and periodically discretized along each frequency scale, map $L{p_1}(\mathbb{R}) \times L{p_2}(\mathbb{R}) \rightarrow L{p_1 p_2 / (p_1 + p_2)}(\mathbb{R})$ provided $2 \leq p_1, p_2 <\infty$ and $\frac{1}{p_1} + \frac{1}{p_2} <1$.

Summary

We haven't generated a summary for this paper yet.