Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Term-Based Methodology for Query Reformulation Understanding (1601.04615v2)

Published 18 Jan 2016 in cs.IR

Abstract: Key to any research involving session search is the understanding of how a user's queries evolve throughout the session. When a user creates a query reformulation, he or she is consciously retaining terms from their original query, removing others and adding new terms. By measuring the similarity between queries we can make inferences on the user's information need and how successful their new query is likely to be. By identifying the origins of added terms we can infer the user's motivations and gain an understanding of their interactions. In this paper we present a novel term-based methodology for understanding and interpreting query reformulation actions. We use TREC Session Track data to demonstrate how our technique is able to learn from query logs and we make use of click data to test user interaction behavior when reformulating queries. We identify and evaluate a range of term-based query reformulation strategies and show that our methods provide valuable insight into understanding query reformulation in session search.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Marc Sloan (5 papers)
  2. Hui Yang (124 papers)
  3. Jun Wang (990 papers)
Citations (28)