Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Number rigidity in superhomogeneous random point fields (1601.04216v1)

Published 16 Jan 2016 in math.PR, cond-mat.stat-mech, math-ph, and math.MP

Abstract: We give sufficient conditions for the number rigidity of a translation invariant or periodic point process on $\mathbb{R}d$, where $d=1,2$. That is, the probability distribution of the number of particles in a bounded domain $\Lambda \subset \mathbb{R}d$, conditional on the configuration on $\Lambda\complement$, is concentrated on a single integer $N_\Lambda$. These conditions are : (a) the variance of the number of particles in a bounded domain $\mathcal{O} \subset \mathbb{R}d$ grows slower than the volume of $\mathcal{O}$ (a.k.a. superhomogeneous point processes), when $\mathcal{O} \uparrow \mathbb{R}d$ (in a self-similar manner), and (b) the truncated pair correlation function is bounded by $C_1[|x-y|+1]{-2}$ in $d=1$ and by $C_2[|x-y|+1]{-(4+\epsilon)}$ in $d=2$. These conditions are satisfied by all known processes with number rigidity ([GP],[G],[PS],[AM],[Bu],[BuDQ], [BBNY], and many more) in $d=1,2$. We also observe, in the light of the results of [PS], that no such criteria exist in $d>2$.

Summary

We haven't generated a summary for this paper yet.