Papers
Topics
Authors
Recent
Search
2000 character limit reached

Double exponential stability of quasi-periodic motion in Hamiltonian systems

Published 8 Jan 2016 in math.DS | (1601.01783v1)

Abstract: We prove that generically, both in a topological and measure-theoretical sense, an invariant Lagrangian Diophantine torus of a Hamiltonian system is doubly exponentially stable in the sense that nearby solutions remain close to the torus for an interval of time which is doubly exponentially large with respect to the inverse of the distance to the torus. We also prove that for an arbitrary small perturbation of a generic integrable Hamiltonian system, there is a set of almost full positive Lebesgue measure of KAM tori which are doubly exponentially stable. Our results hold true for real-analytic but more generally for Gevrey smooth systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.