Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor and Its Tucker Core: the Invariance Relationships (1601.01469v2)

Published 7 Jan 2016 in math.OC and cs.NA

Abstract: In [13], Hillar and Lim famously demonstrated that "multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard". Despite many recent advancements, the state-of-the-art methods for computing such `tensor analogues' still suffer severely from the curse of dimensionality. In this paper we show that the Tucker core of a tensor however, retains many properties of the original tensor, including the CP rank, the border rank, the tensor Schatten quasi norms, and the Z-eigenvalues. When the core tensor is smaller than the original tensor, this property leads to considerable computational advantages as confirmed by our numerical experiments. In our analysis, we in fact work with a generalized Tucker-like decomposition that can accommodate any full column-rank factor matrices.

Citations (44)

Summary

We haven't generated a summary for this paper yet.