Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Some Properties of Calibrated Trifocal Tensors (1601.01467v3)

Published 7 Jan 2016 in cs.CV

Abstract: In two-view geometry, the essential matrix describes the relative position and orientation of two calibrated images. In three views, a similar role is assigned to the calibrated trifocal tensor. It is a particular case of the (uncalibrated) trifocal tensor and thus it inherits all its properties but, due to the smaller degrees of freedom, satisfies a number of additional algebraic constraints. Some of them are described in this paper. More specifically, we define a new notion --- the trifocal essential matrix. On the one hand, it is a generalization of the ordinary (bifocal) essential matrix, and, on the other hand, it is closely related to the calibrated trifocal tensor. We prove the two necessary and sufficient conditions that characterize the set of trifocal essential matrices. Based on these characterizations, we propose three necessary conditions on a calibrated trifocal tensor. They have a form of 15 quartic and 99 quintic polynomial equations. We show that in the practically significant real case the 15 quartic constraints are also sufficient.

Citations (11)

Summary

We haven't generated a summary for this paper yet.