Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On infinite series concerning zeros of Bessel functions of the first kind (1601.00563v5)

Published 4 Jan 2016 in math-ph, math.CV, and math.MP

Abstract: A relevant result independently obtained by Rayleigh and Sneddon on an identity on series involving the zeros of Bessel functions of the first kind is derived by an alternative method based on Laplace transforms. Our method leads to a Bernstein function of time, expressed by Dirichlet series, that allows us to recover the Rayleigh-Sneddon sum. We also consider another method arriving at the same result based on a relevant formula by Calogero. Moreover, we also provide an electrical example in which this sum results to be extremely useful in order to recover the analytical expression for the response of the system to a certain external input.

Summary

We haven't generated a summary for this paper yet.