Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A primal-dual fixed-point algorithm for minimization of the sum of three convex separable functions (1512.09235v1)

Published 31 Dec 2015 in math.OC

Abstract: Many problems arising in image processing and signal recovery with multi-regularization can be formulated as minimization of a sum of three convex separable functions. Typically, the objective function involves a smooth function with Lipschitz continuous gradient, a linear composite nonsmooth function and a nonsmooth function. In this paper, we propose a primal-dual fixed-point (PDFP) scheme to solve the above class of problems. The proposed algorithm for three block problems is a fully splitting symmetric scheme, only involving explicit gradient and linear operators without inner iteration, when the nonsmooth functions can be easily solved via their proximity operators, such as $\ell_1$ type regularization. We study the convergence of the proposed algorithm and illustrate its efficiency through examples on fused LASSO and image restoration with non-negative constraint and sparse regularization.

Summary

We haven't generated a summary for this paper yet.