Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combined statistical and model based texture features for improved image classification (1512.08814v1)

Published 29 Dec 2015 in cs.CV

Abstract: This paper aims to improve the accuracy of texture classification based on extracting texture features using five different texture methods and classifying the patterns using a naive Bayesian classifier. Three statistical-based and two model-based methods are used to extract texture features from eight different texture images, then their accuracy is ranked after using each method individually and in pairs. The accuracy improved up to 97.01% when model based -Gaussian Markov random field (GMRF) and fractional Brownian motion (fBm) - were used together for classification as compared to the highest achieved using each of the five different methods alone; and proved to be better in classifying as compared to statistical methods. Also, using GMRF with statistical based methods, such as Gray level co-occurrence (GLCM) and run-length (RLM) matrices, improved the overall accuracy to 96.94% and 96.55%; respectively.

Citations (22)

Summary

We haven't generated a summary for this paper yet.