Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation of Schrödinger operators with $δ$-interactions supported on hypersurfaces (1512.08658v1)

Published 29 Dec 2015 in math.SP, math-ph, math.AP, and math.MP

Abstract: We show that a Schr\"odinger operator $A_{\delta, \alpha}$ with a $\delta$-interaction of strength $\alpha$ supported on a bounded or unbounded $C2$-hypersurface $\Sigma \subset \mathbb{R}d$, $d\ge 2$, can be approximated in the norm resolvent sense by a family of Hamiltonians with suitably scaled regular potentials. The differential operator $A_{\delta, \alpha}$ with a singular interaction is regarded as a self-adjoint realization of the formal differential expression $-\Delta - \alpha \langle \delta_{\Sigma}, \cdot \rangle \delta_{\Sigma}$, where $\alpha\colon\Sigma\rightarrow \mathbb{R}$ is an arbitrary bounded measurable function. We discuss also some spectral consequences of this approximation result.

Summary

We haven't generated a summary for this paper yet.