Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random Steiner systems and bounded degree coboundary expanders of every dimension (1512.08331v1)

Published 28 Dec 2015 in math.CO and math.PR

Abstract: We introduce a new model of random $d$-dimensional simplicial complexes, for $d\geq 2$, whose $(d-1)$-cells have bounded degrees. We show that with high probability, complexes sampled according to this model are coboundary expanders. The construction relies on Keevash's recent result on designs [Ke14], and the proof of the expansion uses techniques developed by Evra and Kaufman in [EK15]. This gives a full solution to a question raised in [DK12], which was solved in the two-dimensional case by Lubotzky and Meshulam [LM13].

Summary

We haven't generated a summary for this paper yet.