Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

An Analytical Evaluation of Matricizing Least-Square-Errors Curve Fitting to Support High Performance Computation on Large Datasets (1512.08017v1)

Published 25 Dec 2015 in cs.DC

Abstract: The procedure of Least Square-Errors curve fitting is extensively used in many computer applications for fitting a polynomial curve of a given degree to approximate a set of data. Although various methodologies exist to carry out curve fitting on data, most of them have shortcomings with respect to efficiency especially where huge datasets are involved. This paper proposes and analyzes a matricized approach to the Least Square-Errors curve fitting with the primary objective of parallelizing the whole algorithm so that high performance efficiency can be achieved when algorithmic execution takes place on colossal datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.