Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RDF2Rules: Learning Rules from RDF Knowledge Bases by Mining Frequent Predicate Cycles (1512.07734v1)

Published 24 Dec 2015 in cs.AI and cs.DB

Abstract: Recently, several large-scale RDF knowledge bases have been built and applied in many knowledge-based applications. To further increase the number of facts in RDF knowledge bases, logic rules can be used to predict new facts based on the existing ones. Therefore, how to automatically learn reliable rules from large-scale knowledge bases becomes increasingly important. In this paper, we propose a novel rule learning approach named RDF2Rules for RDF knowledge bases. RDF2Rules first mines frequent predicate cycles (FPCs), a kind of interesting frequent patterns in knowledge bases, and then generates rules from the mined FPCs. Because each FPC can produce multiple rules, and effective pruning strategy is used in the process of mining FPCs, RDF2Rules works very efficiently. Another advantage of RDF2Rules is that it uses the entity type information when generates and evaluates rules, which makes the learned rules more accurate. Experiments show that our approach outperforms the compared approach in terms of both efficiency and accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zhichun Wang (5 papers)
  2. Juanzi Li (144 papers)
Citations (42)

Summary

We haven't generated a summary for this paper yet.