Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring Social Well Being in The Big Data Era: Asking or Listening? (1512.07271v1)

Published 22 Dec 2015 in cs.CY

Abstract: The literature on well being measurement seems to suggest that "asking" for a self-evaluation is the only way to estimate a complete and reliable measure of well being. At the same time "not asking" is the only way to avoid biased evaluations due to self-reporting. Here we propose a method for estimating the welfare perception of a community simply "listening" to the conversations on Social Network Sites. The Social Well Being Index (SWBI) and its components are proposed through to an innovative technique of supervised sentiment analysis called iSA which scales to any language and big data. As main methodological advantages, this approach can estimate several aspects of social well being directly from self-declared perceptions, instead of approximating it through objective (but partial) quantitative variables like GDP; moreover self-perceptions of welfare are spontaneous and not obtained as answers to explicit questions that are proved to bias the result. As an application we evaluate the SWBI in Italy through the period 2012-2015 through the analysis of more than 143 millions of tweets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.