Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk Sensitive, Nonlinear Optimal Control: Iterative Linear Exponential-Quadratic Optimal Control with Gaussian Noise (1512.07173v1)

Published 22 Dec 2015 in cs.SY

Abstract: In this contribution, we derive ILEG, an iterative algorithm to find risk sensitive solutions to nonlinear, stochastic optimal control problems. The algorithm is based on a linear quadratic approximation of an exponential risk sensitive nonlinear control problem. ILEG allows to find risk sensitive policies and thus generalizes previous algorithms to solve nonlinear optimal control based on iterative linear-quadratic methods. Depending on the setting of the parameter controlling the risk sensitivity, two different strategies on how to cope with the risk emerge. For positive-value parameters, the control policy uses high feedback gains whereas for negative-value parameters, it uses a robust feedforward control strategy (a robust plan) with low gains. These results are illustrated with a simple example. This note should be considered as a preliminary report.

Citations (26)

Summary

We haven't generated a summary for this paper yet.