Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Facility Deployment Decisions through Warp Optimizaton of Regressed Gaussian Processes (1512.06929v1)

Published 22 Dec 2015 in math.OC, physics.data-an, and stat.ML

Abstract: A method for quickly determining deployment schedules that meet a given fuel cycle demand is presented here. This algorithm is fast enough to perform in situ within low-fidelity fuel cycle simulators. It uses Gaussian process regression models to predict the production curve as a function of time and the number of deployed facilities. Each of these predictions is measured against the demand curve using the dynamic time warping distance. The minimum distance deployment schedule is evaluated in a full fuel cycle simulation, whose generated production curve then informs the model on the next optimization iteration. The method converges within five to ten iterations to a distance that is less than one percent of the total deployable production. A representative once-through fuel cycle is used to demonstrate the methodology for reactor deployment.

Citations (1)

Summary

We haven't generated a summary for this paper yet.