Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving $k$-SUM using few linear queries (1512.06678v2)

Published 21 Dec 2015 in cs.DS, cs.CC, and cs.CG

Abstract: The $k$-SUM problem is given $n$ input real numbers to determine whether any $k$ of them sum to zero. The problem is of tremendous importance in the emerging field of complexity theory within $P$, and it is in particular open whether it admits an algorithm of complexity $O(nc)$ with $c<\lceil \frac{k}{2} \rceil$. Inspired by an algorithm due to Meiser (1993), we show that there exist linear decision trees and algebraic computation trees of depth $O(n3\log3 n)$ solving $k$-SUM. Furthermore, we show that there exists a randomized algorithm that runs in $\tilde{O}(n{\lceil \frac{k}{2} \rceil+8})$ time, and performs $O(n3\log3 n)$ linear queries on the input. Thus, we show that it is possible to have an algorithm with a runtime almost identical (up to the $+8$) to the best known algorithm but for the first time also with the number of queries on the input a polynomial that is independent of $k$. The $O(n3\log3 n)$ bound on the number of linear queries is also a tighter bound than any known algorithm solving $k$-SUM, even allowing unlimited total time outside of the queries. By simultaneously achieving few queries to the input without significantly sacrificing runtime vis-`{a}-vis known algorithms, we deepen the understanding of this canonical problem which is a cornerstone of complexity-within-$P$. We also consider a range of tradeoffs between the number of terms involved in the queries and the depth of the decision tree. In particular, we prove that there exist $o(n)$-linear decision trees of depth $o(n4)$.

Citations (23)

Summary

We haven't generated a summary for this paper yet.