Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic dimension and small-cancellation for hierarchically hyperbolic spaces and groups (1512.06071v2)

Published 18 Dec 2015 in math.GR, math.GT, and math.MG

Abstract: We prove that all hierarchically hyperbolic spaces have finite asymptotic dimension and obtain strong bounds on these dimensions. One application of this result is to obtain the sharpest known bound on the asymptotic dimension of the mapping class group of a finite type surface: improving the bound from exponential to at most quadratic in the complexity of the surface. We also apply the main result to various other hierarchically hyperbolic groups and spaces. We also prove a small-cancellation result namely: if $G$ is a hierarchically hyperbolic group, $H\leq G$ is a suitable hyperbolically embedded subgroup, and $N\triangleleft H$ is "sufficiently deep" in $H$, then $G/\langle\langle N\rangle\rangle$ is a relatively hierarchically hyperbolic group. This new class provides many new examples to which our asymptotic dimension bounds apply. Along the way, we prove new results about the structure of HHSs, for example: the associated hyperbolic spaces are always obtained, up to quasi-isometry, by coning off canonical coarse product regions in the original space (generalizing a relation established by Masur--Minsky between the complex of curves of a surface and Teichm\"{u}ller space).

Summary

We haven't generated a summary for this paper yet.