A hierarchical kinetic theory of birth, death, and fission in age-structured interacting populations (1512.05432v2)
Abstract: We study mathematical models describing the evolution of stochastic age-structured populations. After reviewing existing approaches, we present a full kinetic framework for age-structured interacting populations undergoing birth, death and fission processes, in spatially dependent environments. We define the complete probability density for the population-size-age-chart and find results under specific conditions. Connections with more classical models are also explicitly derived. In particular, we show that factorial moments for non-interacting processes are described by a natural generalization of the McKendrick-von Foerster equation, which describes mean-field deterministic behaviour. Our approach utilizes mixed type, multi-dimensional probability distributions similar to those employed in the study of gas kinetics, with terms that satisfy BBGKY-like equation hierarchies.