Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical Demultiplexing of Color Image Sensor Measurements via Non-linear Random Forest Modeling (1512.05421v1)

Published 17 Dec 2015 in cs.CV

Abstract: The simultaneous capture of imaging data at multiple wavelengths across the electromagnetic spectrum is highly challenging, requiring complex and costly multispectral image sensors. In this study, we introduce a comprehensive framework for performing simultaneous multispectral imaging using conventional image sensors with color filter arrays via numerical demultiplexing of the color image sensor measurements. A numerical forward model characterizing the formation of sensor measurements from light spectra hitting the sensor is constructed based on a comprehensive spectral characterization of the sensor. A numerical demultiplexer is then learned via non-linear random forest modeling based on the forward model. Given the learned numerical demultiplexer, one can then demultiplex simultaneously-acquired measurements made by the image sensor into reflectance intensities at discrete selectable wavelengths, resulting in a higher resolution reflectance spectrum. Simulation and real-world experimental results demonstrate the efficacy of such a method for simultaneous multispectral imaging.

Citations (12)

Summary

We haven't generated a summary for this paper yet.