Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Social Media Image Analysis for Public Health (1512.04476v3)

Published 14 Dec 2015 in cs.SI and cs.CY

Abstract: Several projects have shown the feasibility to use textual social media data to track public health concerns, such as temporal influenza patterns or geographical obesity patterns. In this paper, we look at whether geo-tagged images from Instagram also provide a viable data source. Especially for "lifestyle" diseases, such as obesity, drinking or smoking, images of social gatherings could provide information that is not necessarily shared in, say, tweets. In this study, we explore whether (i) tags provided by the users and (ii) annotations obtained via automatic image tagging are indeed valuable for studying public health. We find that both user-provided and machine-generated tags provide information that can be used to infer a county's health statistics. Whereas for most statistics user-provided tags are better features, for predicting excessive drinking machine-generated tags such as "liquid" and "glass" yield better models. This hints at the potential of using machine-generated tags to study substance abuse.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kiran Garimella (54 papers)
  2. Abdulrahman Alfayad (1 paper)
  3. Ingmar Weber (66 papers)
Citations (84)

Summary

We haven't generated a summary for this paper yet.