Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fighting Bandits with a New Kind of Smoothness (1512.04152v1)

Published 14 Dec 2015 in cs.LG, cs.GT, and stat.ML

Abstract: We define a novel family of algorithms for the adversarial multi-armed bandit problem, and provide a simple analysis technique based on convex smoothing. We prove two main results. First, we show that regularization via the \emph{Tsallis entropy}, which includes EXP3 as a special case, achieves the $\Theta(\sqrt{TN})$ minimax regret. Second, we show that a wide class of perturbation methods achieve a near-optimal regret as low as $O(\sqrt{TN \log N})$ if the perturbation distribution has a bounded hazard rate. For example, the Gumbel, Weibull, Frechet, Pareto, and Gamma distributions all satisfy this key property.

Citations (75)

Summary

We haven't generated a summary for this paper yet.