Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Generalized Principal Component Analysis for Large-scale Applications beyond Gaussianity (1512.03883v2)

Published 12 Dec 2015 in stat.CO and stat.ML

Abstract: Principal Component Analysis (PCA) is a dimension reduction technique. It produces inconsistent estimators when the dimensionality is moderate to high, which is often the problem in modern large-scale applications where algorithm scalability and model interpretability are difficult to achieve, not to mention the prevalence of missing values. While existing sparse PCA methods alleviate inconsistency, they are constrained to the Gaussian assumption of classical PCA and fail to address algorithm scalability issues. We generalize sparse PCA to the broad exponential family distributions under high-dimensional setup, with built-in treatment for missing values. Meanwhile we propose a family of iterative sparse generalized PCA (SG-PCA) algorithms such that despite the non-convexity and non-smoothness of the optimization task, the loss function decreases in every iteration. In terms of ease and intuitive parameter tuning, our sparsity-inducing regularization is far superior to the popular Lasso. Furthermore, to promote overall scalability, accelerated gradient is integrated for fast convergence, while a progressive screening technique gradually squeezes out nuisance dimensions of a large-scale problem for feasible optimization. High-dimensional simulation and real data experiments demonstrate the efficiency and efficacy of SG-PCA.

Citations (1)

Summary

We haven't generated a summary for this paper yet.