Rectangular Kronecker coefficients and plethysms in geometric complexity theory (1512.03798v2)
Abstract: We prove that in the geometric complexity theory program the vanishing of rectangular Kronecker coefficients cannot be used to prove superpolynomial determinantal complexity lower bounds for the permanent polynomial. Moreover, we prove the positivity of rectangular Kronecker coefficients for a large class of partitions where the side lengths of the rectangle are at least quadratic in the length of the partition. We also compare rectangular Kronecker coefficients with their corresponding plethysm coefficients, which leads to a new lower bound for rectangular Kronecker coefficients. Moreover, we prove that the saturation of the rectangular Kronecker semigroup is trivial, we show that the rectangular Kronecker positivity stretching factor is 2 for a long first row, and we completely classify the positivity of rectangular limit Kronecker coefficients that were introduced by Manivel in 2011.